
• Software process improvement

&

SDLC

•Software Process Improvement (SPI)

•Set of tasks,tools, and techniques

• to plan and implement improvement activities to achieve

specific goals such as increasing development speed, achieving

higher product quality or reducing costs.

SPI cycle

SPI-Current Situation Evaluation

 Initial phase of the process

 To assess the current situation of the software process

 Eliciting the requirements from the stakeholders, analyzing the

current artifacts and deliverables, and identifying the

inefficiencies from the software process.

 The elicitation can be conducted through different techniques.

For example, individual interviews, group interview, use-case

scenarios, and observations.

 SPI-Improvement Planning

 The gap between the current level and the target level

should be planned in terms of a set of activities to reach

that target.

 SPI-Improvement Implementation

 The planned activities are executed and it puts the

improvements into practice .

 SPI-Improvement Evaluation

 What is cannot be measured cannot be improved.

 to compare the rate of actual change against its

planned change.

Why are Companies Seeking SPI

 Standardization and Process consistency

 Cost Reduction

 Competitive Edge

 Meeting targets and reduce time to market

 Improve customers satisfaction

Software Development Life Cycle

(SDLC)

 It is a process used by the software industry

 To design, develop and test high quality software’s.

 The SDLC framework provides a systematic process for building software that

ensures the quality and correctness of the software built.

 It aims to produce high-quality software that meets or exceeds customer

expectations, reaches completion within times and cost estimates.

 The SDLC framework consists of detailed plans describing how to develop,

maintain and replace specific software.

 Every phase of the SDLC framework has its own process and deliverables that feed into

the next phase.

 A typical SDLC framework used for developing a software application might include

some version or subset of the following activities:

SDLC

 System Initiation/Planning: where do systems come
from? In most situations, new feasible systems replace
or supplement existing information processing
mechanisms whether they were previously automated,
manual, or informal.

 Requirement Analysis and Specification: identifies the
problems new software system is supposed to solve,
its operational capabilities, its desired performance
characteristics, and the resource infrastructure
needed to support system operation and maintenance.

 Functional Specification or Prototyping: identifies and
potentially formalizes the objects of computation,
their attributes and relationships, the operations that
transform these objects, the constraints that restrict
system behaviour, and so forth.



 Partition and Selection (Build vs. Buy vs. Reuse): given requirements

andfunctional specifications, divide the system into manageable

pieces thatdenote logical subsystems, then determine whether new,

existing, orreusable software systems correspond to the needed

pieces.

 Architectural Design and Configuration Specification: defines the

interconnection and resource interfaces between system

subsystems, components, and modules in ways suitable for their

detailed design and overall configuration management.

 Detailed Component Design Specification: defines the procedural

methods through which the data resources within the modules of a

component are transformed from required inputs into provided

outputs.

 Component Implementation and Debugging: codifies the preceding

specifications into operational source code implementations and

validates

 Software Integration and Testing: affirms and sustains the overall

integrity of the software system architectural configuration through their

basic operation.verifying the consistency and completeness of

implemented modules, verifying the resource interfaces and

interconnections against their specifications, and validating the

performance of the system and subsystems against their requirements.

 Documentation Revision and System Delivery: packaging and rationalizing

recorded system development descriptions into systematic documents

and user guides, all in a form suitable for dissemination and system

support.

 Deployment and Installation: providing directions for installing the

delivered software into the local computing environment, configuring

operating systems parameters and user access privileges, and running

diagnostic test cases to assure the viability of basic system operation.

 Training and Use: providing system users with instructional aids and

guidance for understanding the system's capabilities and limits in order

to effectively use the system.

 Software Maintenance: sustaining the useful operation of a system in

its host/target environment by providing requested functional

enhancements, repairs, performance improvements, and conversions.

SDLC MODELS

 SDLC –

 Descriptive or Prescriptive

 A software life cycle model can be either a descriptive or prescriptive

characterization of how software is or should be developed.

 A descriptive model describes the history of how a particular software system

was developed.

 Descriptive models may be used as the basis for understanding and improving

software development processes, or for building empirically grounded

prescriptive models.

 A prescriptive model prescribes how a new software system should be

developed.

 Prescriptive models are used as guidelines or frameworks to organize and

structure how software development activities should be performed, and in

what order.

PRESCRIPTIVE PROCESS MODELS

 Waterfall Model

 Evolutionary model

Increment Model

Spiral Mode

 Prototype Model

 RAD

 Agile Model

 Component Based development

WATERFALL MODEL

WATERFALL MODEL

 First Process Model

 Linea r-sequential life cycle model.

 Each phase must be completed before the next phase can

begin

 The outcome of one phase act as the input of another

phase.

 There is no overlapping in the phases.

 Outcome of one phase acts as the input for the next

phase .

 When?

 Requirements are very well documented, clear

and fixed.

 Product definition is stable.

 Technology is understood and is not dynamic.

 There are no ambiguous requirements.

 Ample resources with required expertise are

available to support the product.

 The project is short.

 Requirements analysis and definition: The system's services,

constraints, and goals are established by consultation with system

users. They are then defined in detail and serve as a system

specification.(SRS)

 System and software design: The systems design process allocates

the requirements to either hardware or software systems.

 It establishes an overall system architecture.

 Software design involves identifying and describing the

fundamental software system abstractions and their relationships.

 Implementation and unit testing: During this stage, the software

design is realized as a set of programs or program units. Unit

testing involves verifying that each unit meets its specification.

 Integration and system testing: The individual program units or

programs are integrated and tested as a complete system to

ensure that the software requirements have been met. After

testing, the software system is delivered to the customer.

 Operation and maintenance: Normally, this is the longest life-

cycle phase. The system is installed and put into practical use.

Maintenance involves correcting errors that were not discovered

in earlier stages of the life cycle, improving the implementation

of system units, and enhancing the system's services as new

requirements are discovered.

Advantageous
 Simple and easy to understand and use

 Easy to manage due to the rigidity of the model. Each phase has

specific deliverables.

 Phases are processed and completed one at a time.

 Works well for smaller projects where requirements are very well

understood.

 Clearly defined stages.

 Well understood milestones.

 Easy to arrange tasks.

 Process and results are well documented.

Dis Advs
 No working software is produced until late during the life cycle.

 High amounts of risk and uncertainty.

 Not a good model for complex and object-oriented projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are at a moderate to high risk of

changing. So, risk and uncertainty is high with this process model.

 It is difficult to measure progress within stages.

 Cannot accommodate changing requirements.

 Adjusting scope during the life cycle can end a project.

 Integration is done as a "big-bang. at the very end, which doesn't allow identifying any

technological or business bottleneck or challenges early.

